February 17, 2025

onlineviagrasale

Healthy and Happy, the Main Key

Effect of plasma free fatty acids on lung function in male COPD patients

Effect of plasma free fatty acids on lung function in male COPD patients
  • Arslan, S., Yildiz, G., Özdemir, L., Kaysoydu, E. & Özdemir, B. Association between blood pressure, inflammation and spirometry parameters in chronic obstructive pulmonary disease. Korean J. Intern. Med. 34, 108–115 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Gutiérrez Villegas, C., Paz-Zulueta, M., Herrero-Montes, M., Parás-Bravo & P. Madrazo Pérez, M. Cost analysis of chronic obstructive pulmonary disease (COPD): a systematic review. Health Econ. Rev. 11, 1–12 (2021).

    Article 

    Google Scholar 

  • Wattanachayakul, P., Rujirachun, P., Charoenngam, N. & Ungprasert, P. Chronic obstructive pulmonary disease is associated with a higher level of serum uric acid. A systematic review and meta-analysis. Adv. Respir Med. 88, 215–222 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Varmaghani, M. et al. Prevalence of asthma, COPD, and chronic bronchitis in Iran: a systematic review and meta-analysis. Iran. J. Allergy Asthma Immunol. 15, 93–104 (2016).

    PubMed 

    Google Scholar 

  • Hikichi, M., Mizumura, K., Maruoka, S. & Gon, Y. Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke. J. Thorac. Dis. 11, S2129–S2140 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vlahos, R. & Bozinovski, S. Glutathione peroxidase-1 as a novel therapeutic target for COPD. Redox Rep. 18, 142–149 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Tse, H. N. et al. Benefits of high-dose N-acetylcysteine to exacerbation-prone patients with COPD. Chest 146, 611–623 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kiepura, A., Stachyra, K. & Olszanecki, R. Anti-atherosclerotic potential of free fatty acid receptor 4 (FFAR4). Biomedicines 9 (2021).

  • Zhang, L. et al. A high serum-free fatty acid level is associated with cancer. J. Cancer Res. Clin. Oncol. 146, 705–710 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Frommer, K. W. et al. Free fatty acids: Potential proinflammatory mediators in rheumatic diseases. Ann. Rheum. Dis. 74, 303–310 (2015). https://doi.org/10.1136/annrheumdis-2013-203755

  • Stefanovski, D., Boston, R. C. & Punjabi, N. M. Sleep-disordered breathing and free fatty acid metabolism. Chest 158, 2155–2164 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Cheshmehkani, A., Senatorov, I. S., Dhuguru, J., Ghoneim, O. & Moniri, N. H. Free-fatty acid receptor-4 (FFA4) modulates ROS generation and COX-2 expression via the C-terminal b -arrestin phosphosensor in raw 264.7 macrophages. Biochem. Pharmacol. 146, 139–150 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nader, H. & Moniri Free-fatty acid receptor-4 (GPR120): cellular and molecular function and its role in metabolic disorders. Physiol. Behav. 176, 139–148 (2017).

    MATH 

    Google Scholar 

  • Mizuta, K. et al. Novel identification of the free fatty acid receptor FFAR1 that promotes contraction in airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 309, L970–L982 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Sureda, A. et al. Effect of free fatty acids on biodiesel production. Nutrients 146, 1–13 (2019).

    Google Scholar 

  • Wang, Y., Xu, J., Meng, Y., Adcock, I. M. & Yao, X. Role of inflammatory cells in airway remodeling in COPD. Int. J. COPD 13, 3341–3348 (2018). https://doi.org/10.2147/COPD.S176122

  • Dandona, P. et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes 52, 2882–2887 (2007).

    MATH 

    Google Scholar 

  • Liguori, I. et al. Oxidative stress, aging, and diseases. Oxidative Stress Dis. 13, 757–772 (2018).

    CAS 
    MATH 

    Google Scholar 

  • Kotlyarov, S. & Kotlyarova, A. Anti-inflammatory function of fatty acids and involvement of their metabolites in the resolution of inflammation in chronic obstructive pulmonary disease. Int. J. Mol. Sci. 22, 1–31 (2021).

    Article 

    Google Scholar 

  • Shiri, H. et al. Relationship between types and levels of free fatty acids, peripheral insulin resistance, and oxidative stress in T2DM: a case-control study. PLoS One. 19, e0306977 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mohammadi, A., Fallah, H. & Gholamhosseinian, A. Antihyperglycemic effect of rosa damascena is mediated by PPAR.γGene expression in animal model of insulin resistance. Iran. J. Pharm. Res. 16, 1080–1088 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mohammadi, A., Gholamhoseinian, A. & Fallah, H. Zataria multiflora increases insulin sensitivity and PPARγ gene expression in high fructose fed insulin resistant rats. Iran. J. Basic. Med. Sci. 17, 263–270 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kangani, C. O., Kelley, D. E. & DeLany, J. P. New method for GC/FID and GC–C-IRMS analysis of plasma free fatty acid concentration and isotopic enrichment. J. Chromatogr. B. 873, 95–101 (2008).

    Article 
    CAS 

    Google Scholar 

  • Perng, D. W. & Chen, P. K. The relationship between Airway Inflammation and exacerbation in chronic obstructive pulmonary disease. Tuberc Respir Dis. 80, 325–335 (2017).

    Article 
    MATH 

    Google Scholar 

  • Miyamoto, J. et al. Nutritional signaling via free fatty acid receptors. Int. J. Mol. Sci. 17, 450 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Theodore, H., Tulchinsky, Elena, A. & Varavikova The New Public Health, Vol. 1 (Elsevier, 2015).

  • Acharyya, A., Shahjahan, M., Mesbah, F. B., Dey, S. K. & Ali, L. Association of metabolic syndrome with chronic obstructive.pdf. Indian Chest Soc. 33, 385–390 (2016).

    Google Scholar 

  • Li, J. et al. Chemerin A Potential Regulator of Inflammation and .pdf. BioMed Res. Int. 2, 1–20 (2020)

  • Islam, E. A., Limsuwat, C., Nantsupawat, T., Berdine, G. G. & Nugent, K. M. The association between glucose levels and hospital outcomes in patients with acute exacerbations of chronic obstructive pulmonary disease. Ann. Thorac. Med. 10, 94–99 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gläser, S., Krüger, S., Merkel, M., Bramlage, P. & Herth, F. J. F. Chronic obstructive pulmonary disease and diabetes mellitus: A systematic review of the literature. Respiration 89, 253–264 (2015). https://doi.org/10.1159/000369863

  • Najafipour, H. & Beik, A. The impact of opium consumption on blood glucose, serum lipids and blood pressure, and related mechanisms. Front. Physiol. 7, (2016).

  • Markeli, I. et al. Lipid profile and atherogenic indices in patients with stable chronic obstructive pulmonary disease. Nutr. Metabolism Cardiovasc. Dis. 31, 153–161 (2021).

    Article 

    Google Scholar 

  • Young, R. P. & Hopkins, R. J. Chronic obstructive pulmonary disease (COPD) and lung cancer screening. Transl Lung Cancer Res. 7, 347–360 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Chen, H. et al. Lipid metabolism in chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulmonary Disease. 14, 1009–1018 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Xuan, L. et al. Association between chronic obstructive pulmonary disease and serum lipid levels: A meta-analysis. Lipids Health Disease 17, 1–8 (2018). https://doi.org/10.1186/s12944-018-0904-4

  • Zafirova-Ivanovska, B. et al. The level of cholesterol in COPD patients with severe and very severe stage of the disease. Open. Access. Maced J. Med. Sci. 4, 277–282 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taniguchi, A., Tsuge, M., Miyahara, N. & Tsukahara, H. Reactive oxygen species and antioxidative defense in chronic obstructive pulmonary disease. Antioxidants 10, 1–22 (2021).

    Article 
    MATH 

    Google Scholar 

  • Zinellu, E. et al. Oxidative stress biomarkers in chronic obstructive pulmonary disease exacerbations: a systematic review. Antioxidants 10, 1–9 (2021).

    Google Scholar 

  • Dong, J. et al. Mitochondrial membrane protein mitofusin 2 as a potential therapeutic target for treating free fatty acid–induced hepatic inflammation in dairy cows during early lactation. J. Dairy. Sci. 103, 5561–5574 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wiegman, C. H., Li, F., Ryffel, B., Togbe, D. & Chung, K. F. Oxidative stress in ozone-Induced chronic lung inflammation and emphysema: a facet of chronic obstructive pulmonary disease. Front. Immunol. 11, (2020).

  • Wada, H. et al. Reduction in plasma free fatty acid in patients with chronic obstructive pulmonary disease. Am. J. Respir Crit. Care Med. 171, 1465–1465 (2005).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Hsieh, M. J., Yang, T. M. & Tsai, Y. H. Nutritional supplementation in patients with chronic obstructive pulmonary disease. J. Formos. Med. Assoc. 115, 595–601 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Li, X. et al. Endogenously generated omega-3 fatty acids attenuate vascular inflammation and neointimal hyperplasia by interaction with free fatty acid receptor 4 in mice. J. Am. Heart Assoc. 4, 1–16 (2015).

    Article 

    Google Scholar 

  • Kemper, T. A. et al. Higher plasma omega-3 levels are associated with improved exacerbation risk and respiratory-specific quality of life in COPD. Chronic Obstr. Pulmonary Dis. 11, 293–302 (2024).

    MATH 

    Google Scholar 

  • Jiménez-Cepeda, A. et al. Dietary intake of fatty acids and its relationship with FEV1/FVC in patients with chronic obstructive pulmonary disease. Clin. Nutr. ESPEN. 29, 92–96 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Piao, Z. et al. The association between polyunsaturated fatty acids and chronic obstructive pulmonary disease: a meta-analysis. Food Funct. 15, 5929–5941 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wu, Y. et al. PTEN phosphorylation and nuclear export mediate free fatty acid-induced oxidative stress. Antioxid. Redox Signal. 20, 1382–1395 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ma, H. et al. Sparstolonin B suppresses free fatty acid palmitate-induced chondrocyte inflammation and mitigates post-traumatic arthritis in obese mice. J. Cell. Mol. Med. 26, 725–735 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Mao, Y. et al. STING-IRF3 triggers endothelial inflammation in response to free fatty acid-Induced mitochondrial damage in Diet-Induced obesity. Physiol. Behav. 176, 139–148 (2016).

    Google Scholar 

  • link

    Copyright © All rights reserved. | Newsphere by AF themes.