September 25, 2025

onlineviagrasale

Healthy and Happy, the Main Key

Regional lung function in congenital diaphragmatic hernia assessed using electrical impedance tomography

Regional lung function in congenital diaphragmatic hernia assessed using electrical impedance tomography
  • Levin, D. L. Morphologic analysis of the pulmonary vascular bed in congenital left-sided diaphragmatic hernia. J. Pediatr. 92, 805–809 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kinsella, J. P. et al. The left ventricle in congenital diaphragmatic hernia: implications for the management of pulmonary hypertension. J. Pediatr. 197, 17–22 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Bohn, D. Congenital diaphragmatic hernia. Am. J. Respir. Crit. Care Med. 166, 911–915 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Kotecha, S. et al. Congenital diaphragmatic hernia. Eur. Respir. J. 39, 820–829 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Deprest, J. A., Flemmer, A. W., Gratacos, E. & Nicolaides, K. Antenatal prediction of lung volume and in-utero treatment by fetal endoscopic tracheal occlusion in severe isolated congenital diaphragmatic hernia. Semin Fetal Neonatal. Med. 14, 8–13 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Khalaj, K., Antounians, L., Figueira, R. L., Post, M. & Zani, A. Autophagy is impaired in fetal hypoplastic lungs and rescued by administration of amniotic fluid stem cell extracellular vesicles. Am. J. Respir. Crit. Care Med. 206, 476–487 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Tingay, D. G. & Kinsella, J. P. Heart of the matter? Early ventricular dysfunction in congenital diaphragmatic hernia. Am. J. Respir. Crit. Care Med. 200, 1462–1464 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Snoek, K. G. et al. Conventional mechanical ventilation versus high-frequency oscillatory ventilation for congenital diaphragmatic hernia: a randomized clinical trial (The VICI-trial). Ann. Surg. 263, 867–874 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Snoek, K. G. et al. Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: the CDH EURO consortium consensus – 2015 update. Neonatology 110, 66–74 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Puligandla, P. et al. Diagnosis and management of congenital diaphragmatic hernia: a 2023 update from the canadian congenital diaphragmatic hernia collaborative. Arch. Dis. Child Fetal Neonatal. Ed. 109, 239–252 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Thome, U., Topfer, A., Schaller, P. & Pohlandt, F. Comparison of lung volume measurements by antero-posterior chest X-ray and the SF6 washout technique in mechanically ventilated infants. Pediatr. Pulmonol. 26, 265–272 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Frerichs, I. et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the translational EIT development study group. Thorax 72, 83–93 (2017).

    Article 
    PubMed 

    Google Scholar 

  • De Luca, D. et al. Personalized medicine for the management of RDS in preterm neonates. Neonatology, 118, 127–138 (2021).

  • He, L. L. H. et al. Lung ultrasound detects regional aeration inhomogeneity in ventilated preterm lambs. Pediatr. Res 95, 129–134 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Comparini, R. G., Falcao, M. C., Johnston, C. & Carvalho, W. B. Electrical impedance tomography in congenital diaphragmatic hernia. Clin.76, e3210 (2021).

    Article 

    Google Scholar 

  • Schroeder, L. et al. Evaluation of regional ventilation distributions in newborns with congenital diaphragmatic hernia. Am. J. Respir. Crit. Care Med. 209, 601–606 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Bhatia, R. et al. Extubation generates lung volume inhomogeneity in preterm infants. Arch. Dis. Child Fetal Neonatal. Ed. 107, 82–86 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Dowse, G. et al. Synchronized inflations generate greater gravity-dependent lung ventilation in neonates. J. Pediatr. 228, 24–30 e10 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Thomson, J. et al. Regional ventilation characteristics during non-invasive respiratory support in preterm infants. Arch. Dis. Child Fetal Neonatal. Ed. 106, 370–375 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Sophocleous, L. et al. Effect of sternal electrode gap and belt rotation on the robustness of pulmonary electrical impedance tomography parameters. Physiol. Meas. 41, 035003 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Becher, T. H. et al. Prolonged continuous monitoring of regional lung function in infants with respiratory failure. Ann. Am. Thorac. Soc. 19, 991–999 (2021).

  • Miedema, M. et al. Individualized multiplanar electrical impedance tomography in infants to optimize lung monitoring. Am. J. Respir. Crit. Care Med. 195, 536–538 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Bhatia, R., Davis, P. G. & Tingay, D. G. Regional volume characteristics of the preterm infant receiving first intention continuous positive airway pressure. J. Pediatr. 187, 80–88 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Miedema, M., de Jongh, F. H., Frerichs, I., van Veenendaal, M. B. & van Kaam, A. H. The effect of airway pressure and oscillation amplitude on ventilation in pre-term infants. Eur. Respir. J. 40, 479–484 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Tingay, D. G. et al. Inflating pressure and not expiratory pressure initiates lung injury at birth in preterm lambs. Am. J. Respir. Crit. Care Med. 208, 589–599 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Tingay, D. G. et al. Gradual aeration at birth is more lung protective than a sustained inflation in preterm lambs. Am. J. Respir. Crit. Care Med. 200, 608–616 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patel, N. Use of milrinone to treat cardiac dysfunction in infants with pulmonary hypertension secondary to congenital diaphragmatic hernia: a review of six patients. Neonatology 102, 130–136 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Schinckel, N. F. et al. Skin-to-skin care alters regional ventilation in stable neonates. Arch. Dis. Child Fetal Neonatal Ed. 106, 76–80 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Gattinoni, L., Caironi, P., Pelosi, P. & Goodman, L. R. What has computed tomography taught us about the acute respiratory distress syndrome? Am. J. Respir. Crit. Care Med 164, 1701–1711 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pellicano, A. et al. Comparison of four methods of lung volume recruitment during high frequency oscillatory ventilation. Intensive Care Med. 35, 1990–1998 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Jank, M., Doktor, F., Zani, A. & Keijzer, R. Cellular origins and translational approaches to congenital diaphragmatic hernia. Semin Pediatr. Surg. 33, 151444 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Pillow, J. J. High-frequency oscillatory ventilation: mechanisms of gas exchange and lung mechanics. Crit. Care Med. 33, S135–S141 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Scott, T. J. A., Jacob, C., Tingay, D. G. & Leontini, J. S. Gas transport mechanisms during high-frequency ventilation. Respir. Res. 25, 446 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel, N. et al. Ventricular dysfunction is a critical determinant of mortality in congenital diaphragmatic hernia. Am. J. Respir. Crit. Care Med. 200, 1522–1530 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Carlisle, H. R. et al. Regional distribution of blood volume within the preterm infant thorax during synchronised mechanical ventilation. Intensive Care Med. 36, 2101–2108 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Peetsold, M. G. et al. The long-term follow-up of patients with a congenital diaphragmatic hernia: a broad spectrum of morbidity. Pediatr. Surg. Int. 25, 1–17 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ijsselstijn, H., Tibboel, D., Hop, W. J., Molenaar, J. C. & de Jongste, J. C. Long-term pulmonary sequelae in children with congenital diaphragmatic hernia. Am. J. Respir. Crit. Care Med. 155, 174–180 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Peetsold, M. G. et al. Pulmonary function and exercise capacity in survivors of congenital diaphragmatic hernia. Eur. Respir. J. 34, 1140–1147 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tingay, D. G. et al. Spatiotemporal aeration and lung injury patterns are influenced by the first inflation strategy at birth. Am. J. Respir. Cell Mol. Biol. 54, 263–272 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lally, K. P. et al. Standardized reporting for congenital diaphragmatic hernia-an international consensus. J. Pediatr. Surg. 48, 2408–2415 (2013).

    Article 
    PubMed 

    Google Scholar 

  • link

    Copyright © All rights reserved. | Newsphere by AF themes.